
www.iol.unh.edu

© 2021 University of New Hampshire InterOperability Laboratory

Experimental Analysis of the Performance and Scalability of
Network Time Security for the Network Time Protocol

October 5th, 2022

Griffin Leclerc
University of New Hampshire
InterOperability Laboratory

Department of Computer Science
gleclerc@iol.unh.edu

Radim Bartos
University of New Hampshire

Department of Computer Science
rbartos@unh.edu

1

This research has been supported in part by a gift from the Internet Society
to assist in the establishment of a Community Network Time Security Lab at the

UNH IOL

http://iol.unh.edu/

Spoofing - An unqualified attacker acts as a timing
master to distribute false timing information

Man in the Middle (MITM) - Modification of in flight NTP
requests to inject incorrect timing information

Replay - An attacker modifies an replays a previous NTP
response to convey incorrect timing information

2

Vulnerabilities of NTP

Address the vulnerabilities of NTP through identity
verification and authentication

While maintaining a high level of scalability and
performance

3

Objectives of NTS

4

Need for Message Security

To ensure authenticity of messages,
encryption keys must be introduced.

5

Need for Key Distribution

To ensure authenticity of messages,
encryption keys must be introduced.

These keys must be securely and
dynamically distributed among all
nodes.

6

Need for Scalability

To ensure authenticity of messages,
encryption keys must be introduced.

These keys must be securely and
dynamically distributed among all
nodes.

Multiple NTP servers should be
available for scalability.

To ensure authenticity of messages,
encryption keys must be introduced.

These keys must be securely and
dynamically distributed among all
nodes.

Multiple NTP servers should be
available for scalability.

NTP Servers should not maintain state.

7

Need for Stateless Operation

NTP Servers should not maintain a local key pair for
each NTP client
• Data transfer overhead
• Keys must be rotated

A secure cookie is defined which allows clients to
maintain their own local state

8

Stateless NTS Operation

Servers generate a secret master AEAD key K and unique value I to identify K

Servers form a plaintext, P containing:
• The AEAD algorithm negotiated during NTS-KE
• The S2C key
• The C2S key

Encrypting P with a nonce N under K results in the ciphertext C

The cookie consists of (I, N, C)

9

NTS-KE Cookie Format

From RFC8915

A: The associated data, consisting of the NTP packet beginning from the start of
the NTP header and ending at the end of the last extension field

P: any additional NTP extension fields to be encrypted

N: The nonce required by the negotiated AEAD algorithm

K: either the C2S or S2C encryption key, depending on message direction

The Encrypted Extension field for NTPv4 consists of (A, P, N) encrypted by K

10

NTS Authenticator Extension Field

From RFC8915

11

An adaptation of Figure 1 from RFC8915

Two protocols are defined:

NTS-KE:
Clients obtain an encrypted cookie from
the NTS-KE server via TLS, t1 to t4

Extension Fields for NTPv4:
Secure NTPv4 with shared encryption
parameters from NTS-KE, t5 to t9

Network Time Security Mechanisms

12

An adaptation of Figure 1 from RFC8915

• The NTP server’s ability to decrypt
the cookie proves it is a trusted
member of the same NTP domain

• Decrypting the extension field from
the NTP server verifies the integrity
of the packet

• A nonce in the extension field
prevents replay

Network Time Security Guarantees

This paper involves two studies of NTS:

Performance - Quantify difference in time transfer
completion when compared to base NTP

Scalability - Observe protocol performance as network
load increases

13

Performance and Scalability

14

dCKE = t4 - t1
Time for a client to receive the initial
encrypted cookie

dCNTS = t9 - t5
Time for a client to conduct
authenticated time transfer

Client Measurement Definitions

15

dSKE = t3 - t2
Time for a KE server to create an encrypted
cookie

dSNTP = t7 - t6
Time for an NTP server to create an NTPv4
header

dSNTS = t8 - t7
Time for an NTP server to process a cookie
and authenticate an NTPv4 message

Server Measurement Definitions

16

Other Measurement Definitions

dCNTP

Calculated approximation of
unauthenticated time transfer

= dCNTS − dSNTS
= (t9 − t5) − (t8 − t7)

Quantify any time transfer performance impact
introduced by NTS mechanisms

Isolate NTS operation from NTP

Augment Cloudflare’s open source NTS implementation
with Rust standard library functions

17

Performance Study

18

Performance Experiment Topology

Physical
LAN

Client - Virtual machine with eight cores and 16 GB of
memory
• Transmitted one NTP-KE request and one NTP

request per second for 1000 seconds

Server - Physical machine with a 4-core 3.3 GHz Intel
i5-2500k and 24 GB of memory
• Hosted both the NTS-KE and NTP server

19

Performance Environment Details

20

Average observation:

dCKE ≈ 2.26 ms

dCNTS ≈ 0.87 ms

Client Measurement CDFs

2.26
ms

0.87
ms

21

Server Measurement CDFs

18.13
μs

2.03
μs

80.80
μs

22

Performance Results

Client:
• NTS-KE adds an overhead of 2.26 ms
• Unauthenticated NTPv4 (dCNTP) takes 0.79 ms
• Authenticated NTPv4 (dCNTS) takes 0.87 ms

o A 9.73% increase in time required to conduct time transfer

Server:
• NTS-KE adds an overhead of 18.13 μs
• Repeated server side operations increased from 2.03 μs to

80.80 μs

Determines how many requests per second (rps) the
NTS-KE and the NTP server could process

Multiple client machines were used to issue a high
number of rps

23

Scalability Study

24

Physical
LAN

Scalability Experiment Topology

1. Measurement client issues 100 rps for 20 seconds
2. Increases the number of requests by 100 each iteration

until 500 rps
3. After gathering measurements at 500 rps an AUX client is

enabled and begins issuing 500 rps and the measurement
client begins again at 100 rps, resulting in a global load of
600 rps

4. This pattern continues until 8000 rps are issued globally

25

Scalability Description

26

Scalability Description

27

Scalability Description

28

Scalability Description

29

Scalability Description

30

Scalability Description

31

Scalability Description

32

Scalability Description

33

Scalability Description

34

Scalability Description

35

Scalability Description

36

Scalability Description

37

Scalability Description

Measurement Client - Virtual machine with eight cores
and 16 GB of memory
Auxiliary Client(s) - Virtual machine with four cores and 8
GB of memory

Server - Physical machine with a 4-core 3.3 GHz Intel
i5-2500k and 24 GB of memory
• Hosted both the NTS-KE and NTP server

38

Scalability Environment Details

The measurement client waits for all active AUX Clients
to issue begin issuing requests before measuring
response time
• This emulates a worst-case scenario

In order to load the NTS-KE and NTP servers, each client
was configured to issue three NTPv4 exchanges for each
NTS-KE cookie acquired
• This follows the results of the performance study

39

Scalability Experiment Details

40

Beginning at 2000 rps:

95th percentile dCKE
increases by
approximately 744.64 ms

Median dCKE increases
by approximately 50.09
ms

41

Beginning at 2300 rps:
The client experiences network errors during NTS-KE

42

Load was observed to
have no effect on
authenticated NTPv4
Time transfer

dCNTS remained around
the expected value
obtained during the
performance study of
approximately 0.7 ms,
with few outliers

43

All server side operations
were unaffected by
external network load

dSKE

dSNTP dSNTS

Scalability:
• The NTS-KE server could only process 2000 requests

per second before a substantial and consistent
increase in response time

• No other measurements were affected by scaling

44

Scalability Results

Performance:
• NTS-KE overhead of 2.26 ms
• Unauthenticated NTPv4 (dCNTP)

takes 0.79 ms
• Authenticated NTPv4 (dCNTS)

takes 0.87 ms
o A 9.73% increase

• Repeated server side operations
increased from 2.03 μs to 80.80
μs

45

Conclusions

Scalability:
• The NTS-KE server could only

process 2000 requests per
second before an increase in
response time and error rate

• No other measurements were
affected by scaling

www.iol.unh.edu

© 2021 University of New Hampshire InterOperability Laboratory

Thank You
Griffin Leclerc

University of New Hampshire
InterOperability Laboratory

Department of Computer Science
gleclerc@iol.unh.edu

2022

Radim Bartos
University of New Hampshire

Department of Computer Science
rbartos@unh.edu

46

http://iol.unh.edu/

RFC 8615
https://datatracker.ietf.org/doc/html/rfc8915

Cloudflare’s open source NTS implementation
https://github.com/cloudflare/cfnts

ISPCS 2010
http://archive.ispcs.org/2010/index.html

Implementing Proposed IEEE 1588 Integrated Security Mechanism
https://ieeexplore.ieee.org/document/8543084

Cargo Bench
https://doc.rust-lang.org/unstable-book/library-features/test.html

47

Reference

