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Spoofing - An unqualified attacker acts as a timing 
master to distribute false timing information

Man in the Middle (MITM) - Modification of in flight NTP 
requests to inject incorrect timing information

Replay - An attacker modifies an replays a previous NTP 
response to convey incorrect timing information

2

Vulnerabilities of NTP



Address the vulnerabilities of NTP through identity 
verification and authentication

While maintaining a high level of scalability and 
performance
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Objectives of NTS
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Need for Message Security

To ensure authenticity of messages, 
encryption keys must be introduced.
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Need for Key Distribution

To ensure authenticity of messages, 
encryption keys must be introduced.

These keys must be securely and 
dynamically distributed among all 
nodes.
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Need for Scalability

To ensure authenticity of messages, 
encryption keys must be introduced.

These keys must be securely and 
dynamically distributed among all 
nodes.

Multiple NTP servers should be 
available for scalability.



To ensure authenticity of messages, 
encryption keys must be introduced.

These keys must be securely and 
dynamically distributed among all 
nodes.

Multiple NTP servers should be 
available for scalability.

NTP Servers should not maintain state. 
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Need for Stateless Operation



NTP Servers should not maintain a local key pair for 
each NTP client
• Data transfer overhead
• Keys must be rotated

A secure cookie is defined which allows clients to 
maintain their own local state
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Stateless NTS Operation



Servers generate a secret master AEAD key K and unique value I to identify K

Servers form a plaintext, P containing:
• The AEAD algorithm negotiated during NTS-KE
• The S2C key
• The C2S key

Encrypting P with a nonce N under K results in the ciphertext C

The cookie consists of (I, N, C)
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NTS-KE Cookie Format

From RFC8915



A: The associated data, consisting of the NTP packet beginning from the start of 
the NTP header and ending at the end of the last extension field

P: any additional NTP extension fields to be encrypted

N: The nonce required by the negotiated AEAD algorithm

K: either the C2S or S2C encryption key, depending on message direction 

The Encrypted Extension field for NTPv4 consists of (A, P, N) encrypted by K
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NTS Authenticator Extension Field

From RFC8915
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An adaptation of Figure 1 from RFC8915

Two protocols are defined:

NTS-KE: 
Clients obtain an encrypted cookie from 
the NTS-KE server via TLS, t1 to t4

Extension Fields for NTPv4: 
Secure NTPv4 with shared encryption 
parameters from NTS-KE, t5 to t9

Network Time Security Mechanisms
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An adaptation of Figure 1 from RFC8915

• The NTP server’s ability to decrypt 
the cookie proves it is a trusted 
member of the same NTP domain

• Decrypting the extension field from 
the NTP server verifies the integrity 
of the packet

• A nonce in the extension field 
prevents replay

Network Time Security Guarantees 



This paper involves two studies of NTS:

Performance - Quantify difference in time transfer 
completion when compared to base NTP

Scalability - Observe protocol performance as network 
load increases
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Performance and Scalability
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dCKE  = t4 - t1
Time for a client to receive the initial 
encrypted cookie

dCNTS = t9 - t5
Time for a client to conduct 
authenticated time transfer

Client Measurement Definitions
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dSKE = t3 - t2
Time for a KE server to create an encrypted 
cookie

dSNTP = t7 - t6
Time for an NTP server to create an NTPv4 
header

dSNTS =  t8 - t7
Time for an NTP server to process a cookie 
and authenticate an NTPv4 message

Server Measurement Definitions
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Other Measurement Definitions

dCNTP

Calculated approximation of 
unauthenticated time transfer

= dCNTS − dSNTS 
= (t9 − t5) − (t8 − t7)



Quantify any time transfer performance impact 
introduced by NTS mechanisms

Isolate NTS operation from NTP

Augment Cloudflare’s open source NTS implementation 
with Rust standard library functions
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Performance Study
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Performance Experiment Topology

Physical 
LAN



Client - Virtual machine with eight cores and 16 GB of 
memory
• Transmitted one NTP-KE request and one NTP 

request per second for 1000 seconds

Server - Physical machine with a 4-core 3.3 GHz Intel
i5-2500k and 24 GB of memory 
• Hosted both the NTS-KE and NTP server 
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Performance Environment Details
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Average observation:

dCKE ≈ 2.26 ms

dCNTS ≈ 0.87 ms

Client Measurement CDFs

2.26 
ms

0.87 
ms
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Server Measurement CDFs

18.13 
μs

2.03 
μs

80.80 
μs
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Performance Results

Client:
• NTS-KE adds an overhead of 2.26 ms
• Unauthenticated NTPv4 (dCNTP) takes 0.79 ms
• Authenticated NTPv4 (dCNTS) takes 0.87 ms

o A 9.73% increase in time required to conduct time transfer

Server:
• NTS-KE adds an overhead of 18.13 μs
• Repeated server side operations increased from 2.03 μs to 

80.80 μs



Determines how many requests per second (rps) the 
NTS-KE and the NTP server could process

Multiple client machines were used to issue a high 
number of rps
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Scalability Study
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Physical 
LAN

Scalability Experiment Topology



1. Measurement client issues 100 rps for 20 seconds
2. Increases the number of requests by 100 each iteration 

until 500 rps
3. After gathering measurements at 500 rps an AUX client is 

enabled and begins issuing 500 rps and the measurement 
client begins again at 100 rps, resulting in a global load of 
600 rps

4. This pattern continues until 8000 rps are issued globally
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Scalability Description
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Scalability Description
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Scalability Description
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Scalability Description
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Scalability Description
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Scalability Description
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Scalability Description
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Scalability Description



35

Scalability Description
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Scalability Description
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Scalability Description



Measurement Client - Virtual machine with eight cores 
and 16 GB of memory
Auxiliary Client(s) - Virtual machine with four cores and 8 
GB of memory

Server - Physical machine with a 4-core 3.3 GHz Intel
i5-2500k and 24 GB of memory
• Hosted both the NTS-KE and NTP server
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Scalability Environment Details



The measurement client waits for all active AUX Clients 
to issue begin issuing requests before measuring 
response time
• This emulates a worst-case scenario 

In order to load the NTS-KE and NTP servers, each client 
was configured to issue three NTPv4 exchanges for each 
NTS-KE cookie acquired
• This follows the results of the performance study
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Scalability Experiment Details
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Beginning at 2000 rps:

95th percentile dCKE 
increases by 
approximately 744.64 ms

Median dCKE increases 
by approximately 50.09 
ms
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Beginning at 2300 rps:
The client experiences network errors during NTS-KE
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Load was observed to 
have no effect on 
authenticated NTPv4 
Time transfer

dCNTS remained around 
the expected value 
obtained during the 
performance study of 
approximately 0.7 ms, 
with few outliers
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All server side operations 
were unaffected by 
external network load

dSKE

dSNTP dSNTS



Scalability:
• The NTS-KE server could only process 2000 requests 

per second before a substantial and consistent 
increase in response time

• No other measurements were affected by scaling
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Scalability Results



Performance:
• NTS-KE overhead of 2.26 ms
• Unauthenticated NTPv4 (dCNTP) 

takes 0.79 ms
• Authenticated NTPv4 (dCNTS) 

takes 0.87 ms
o A 9.73% increase 

• Repeated server side operations 
increased from 2.03 μs to 80.80 
μs
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Conclusions

Scalability:
• The NTS-KE server could only 

process 2000 requests per 
second before an increase in 
response time and error rate

• No other measurements were 
affected by scaling
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